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Abstract
A significant impetus for recent ocean biogeochemical research has been
to better understand the ocean’s role as a sink for anthropogenic CO2. In
the 1990s the global carbon survey of the World Ocean Circulation Exper-
iment (WOCE) and the Joint Global Ocean Flux Study ( JGOFS) inspired
the development of several approaches for estimating anthropogenic car-
bon inventories in the ocean interior. Most approaches agree that the total
global ocean inventory of Cant was around 120 Pg C in the mid-1990s. To-
day, the ocean carbon uptake rate estimates suggest that the ocean is not
keeping pace with the CO2 emissions growth rate. Repeat occupations of
the WOCE/JGOFS survey lines consistently show increases in carbon in-
ventories over the last decade, but have not yet been synthesized enough to
verify a slowdown in the carbon storage rate. There are many uncertainties
in the future ocean carbon storage. Continued observations are necessary
to monitor changes and understand mechanisms controlling ocean carbon
uptake and storage in the future.
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CFC:
chlorofluorocarbon

Cant: anthropogenic
carbon

INTRODUCTION

The global utilization of fossil fuels for energy is rapidly changing the trace gas composition of
the Earth’s atmosphere, causing a warming from excess CO2, water vapor, chlorofluorocarbons
(CFCs), methane, nitrous oxide, and other greenhouse gases. These anthropogenic gases play a
critical role in controlling the Earth’s climate because they increase the infrared opacity of the
atmosphere, causing the planetary surface to warm. The world’s oceans play an important role
in the global carbon cycle as they are a vast reservoir of carbon, rapidly exchange carbon with
the atmosphere, and take up a substantial portion of anthropogenically released carbon from the
atmosphere.

There are only three major reservoirs with natural exchange rates fast enough to vary signif-
icantly on the timescale of decades to centuries: the atmosphere, the terrestrial biosphere, and
the oceans. Of this three-component system, approximately 90% of the carbon is located in the
oceans. The oceans are able to hold much more carbon than the other reservoirs because most of
the CO2 that diffuses into the oceans reacts with seawater to form carbonic acid (H2CO3) and its
dissociation products, bicarbonate (HCO3

−) and carbonate (CO3
2−) ions.

Seawater carbonate chemistry is governed by a series of chemical uptake, dissolution, and
precipitation reactions:

Air-sea exchange: CO2(atmos) ↔ CO2(aq) (1)

The equilibration timescale for this exchange is about one year, so on a global scale surface water
CO2 generally increases at close to the same annual rate as CO2 in the atmosphere (Takahashi
et al. 2009). On a finer scale, local physical or biological perturbation events can make surface
water CO2 significantly deviate from atmospheric equilibrium.

Reaction with H2O: CO2(aq) + H2O ↔ H2CO3 ↔ H+ + HCO−
3 ↔ 2H+ + CO2−

3 (2)

These reactions are relatively rapid, and for most applications, the partitioning of inorganic
carbonate species can be assumed to be in equilibrium. For typical surface ocean conditions, about
90% of the total carbon dioxide is in the form of the HCO3

−, ∼9% as carbonate CO3
2−, with

only ∼1% remaining as undissociated CO2 (aq) and H2CO3.
Although ocean biology plays an integral role in the natural distribution of carbon in the ocean,

there is no conclusive evidence that the ocean uptake and storage of anthropogenic carbon, thus
far, involve anything other than a chemical and physical response to rising atmospheric CO2.

On timescales of decades, the rate at which anthropogenic carbon (Cant) is moved into the
ocean interior limits the rate of ocean uptake (Sarmiento et al. 1992). The physical mixing time
for the ocean is two to three orders of magnitude slower than the mixing time of the atmosphere
and is the primary process controlling large-scale CO2 uptake (Stuiver et al. 1983). Currently the
rate of ocean carbon storage does not seem to be keeping pace with the rate of growth in CO2

emissions (Bindoff et al. 2007). Over hundreds to thousands of years, however, the oceans will be
able to absorb 70–80% of CO2 released to the atmosphere (e.g., Archer & Maier-Reimer 1994,
Archer et al. 1997). Over these timescales ocean circulation becomes less of a limiting process and
processes like potential changes in ocean biology become important. Chemical neutralization of
the CO2 through the dissolution of calcium carbonate sediments could potentially absorb another
9–15% of fossil fuel release on timescales of tens of thousands of years (Archer et al. 1997). Thus,
the role of the ocean in controlling atmospheric CO2 depends on the timescale being examined
and the processes that dominate over those timescales.

To understand the oceans’ role in the global carbon cycle and how it might be changing over
time, one must understand the rate at which the oceans absorb anthropogenic CO2 from the
atmosphere, referred to as Cant uptake, as well as how and where that CO2 is stored in the ocean
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Pg C: petagram
carbon (peta ≡ 1015)

GCM: Global
Circulation Model

interior, Cant storage. Uptake is not necessarily the same as Cant storage, because ocean transport
can move carbon that is removed from the atmosphere in one place and store that carbon in
another place. For example, models suggest that the equatorial Pacific is a region of significant
Cant uptake because the equatorial upwelling exposes older waters that have not previously seen the
elevated atmospheric CO2 values. However, relatively little Cant is stored in the equatorial Pacific
because the carbon is quickly transported away from the equator and stored in the subtropical
gyres (Sarmiento et al. 1992).

The techniques for estimating ocean Cant uptake are also different from the techniques for
estimating storage. Gruber et al. (2009) recently summarized the latest Cant uptake estimates
from a variety of approaches including air-sea CO2 partial pressure differences, inversion models
together with measured changes in ocean interior carbon, changes in atmospheric oxygen together
with concurrent measurements of atmospheric CO2, inversion models together with measured
changes in atmospheric CO2, air-sea δ13C disequilibrium, deconvolution of atmospheric CO2

and δ13C, joint atmosphere-ocean inversions, and a suite of prognostic ocean general circulation
models. The uptake estimates ranged from 1.5 ± 0.9 to 2.4 ± 0.5 Pg C year−1. Gruber et al.
concluded that the latest estimates from all of these techniques for the period of the 1990s and
early 2000s were internally consistent within their uncertainties.

This article focuses on Cant storage, not on the uptake that was recently summarized by Gruber
et al. (2009). Although the spatial and temporal patterns of Cant uptake may be different from the
storage patterns, these two measures of the ocean carbon cycle are closely related to each other.
Integrated over large enough time and space domains, the net uptake should be reconcilable with
the Cant storage. So far, this has only been possible in a qualitative sense or through inverse calcu-
lations using ocean Global Circulation Models (GCMs), but as techniques improve for estimating
Cant storage over shorter time intervals, more quantitative comparisons should be possible.

OCEAN CARBON OBSERVATIONS

A significant impetus for ocean biogeochemical research over the past several decades has been
to better understand the ocean’s role as a sink for anthropogenic CO2. Ocean uptake estimates in
surface waters have the advantage that there are many opportunities to make measurements using
research ships, underway measurements from ships of opportunity, autonomous measurements
from moorings and drifters, and remote sensing. Air-sea exchange of CO2 can be measured over
short time intervals and with sufficient observations could provide global CO2 uptake estimates
on timescales of months to years. The disadvantage of uptake estimates from surface observations
is the very large dynamic range in surface ocean CO2 values and the uncertainties in air-sea flux
parameterizations make it difficult to fully constrain the net global ocean uptake (Wanninkhof
et al. 2009). For example, Takahashi et al. (2009) estimate a net CO2 uptake for the nominal year
2000 as 1.6 ± 0.9 Pg C. They attribute most of the uncertainty in the flux estimate to random
errors: 13% for uncertainty in the pCO2 estimates, 30% to the scaling factor for the gas transfer
piston velocity parameterization, 20% to uncertainty in the wind speeds, and 35% for the mean
rate of change in ocean water pCO2. The remainder of the error is for the uncertainty in their
corrections for systematic biases caused by undersampling and the interpolation method used.

The advantage of using ocean interior measurements to quantify changes in Cant storage is that
there is much less variability in the ocean interior. The large seasonal and subseasonal variations
in the ocean surface are not seen in the ocean interior, making it much easier to detect long-term
secular changes due to Cant accumulation. The major downsides of ocean interior measurements
are that they require long oceanographic cruises to collect the necessary interior ocean data, the
anthropogenic signal is small compared to the large natural inorganic carbon background in the
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GEOSECS:
Geochemical Ocean
Sections

WOCE: World
Ocean Circulation
Experiment

JGOFS: Joint Global
Ocean Flux Study

Total alkalinity (TA):
a measure of the
charge balance of
seawater (the excess of
bases over acids)

Dissolved inorganic
carbon (DIC): the
sum of dissolved
carbon dioxide,
carbonic acid,
bicarbonate, and
carbonate

ocean (typically less than 1%), and there are several processes that control carbon distributions in
the ocean that must be understood and quantified.

The Geochemical Ocean Sections (GEOSECS) program of the 1970s provided the first global
inorganic carbon data set with consistent, well-documented methods. However, shortly after
GEOSECS was completed Broecker et al. (1979) commented that “. . .unless [inorganic carbon]
measurements that are more accurate by an order of magnitude can be made, at least a decade will
pass before direct confirmation of the model-based [Cant uptake] estimates will be obtained.” These
words proved to be true as it has taken more than a decade and more than an order of magnitude
improvement in the measurements to produce Cant estimates that were accepted by the carbon
cycle community. In the years following GEOSECS, measurement techniques were significantly
improved for regional studies like the Transient Tracers in the Ocean (TTO), and South Atlantic
Ventilation Experiment (SAVE) in the Atlantic during the 1980s. The next global survey of carbon
distributions in the ocean, however, did not occur until the 1990s. At that time two international
research programs, the World Ocean Circulation Experiment (WOCE) Hydrographic Program
and the Joint Global Ocean Flux Study ( JGOFS), collaborated to complete nearly 100 cruises with
inorganic carbon measurements (Wallace 2001). It was these data that created a new revolution
in assessing Cant from direct measurements of ocean inorganic carbon and other anthropogenic
tracers. Many new techniques for evaluating the observations have been developed, but the results
have taken a while to make it into the scientific literature.

In the early 2000s the Intergovernmental Panel on Climate Change developed its third assess-
ment report (IPCC 2001). This report had one chapter on observed climate variability and climate
change and this chapter contained almost nothing on ocean carbon cycle observations because
there were very few published results at that time. The assessment report, in general, relied almost
exclusively on indirect approaches and models to estimate the ocean Cant uptake and storage. Also
in the early 2000s, the physical and biogeochemical communities organized themselves to initiate
an effort to collect full water column boundary to boundary hydrographic and geochemical data
along a subset of the cruises that were initially run as part of the WOCE/JGOFS global survey in
the 1990s. At least seven countries agreed to coordinate these repeat hydrographic survey cruises
to monitor decadal-scale changes in the ocean. For example, the US CLIVAR/CO2 Repeat Hy-
drography Program outlined 19 cruises that it will reoccupy on a 10-year rotating basis. The
program started in 2003 and is slated to complete its first decadal survey by 2012.

By the time the fourth IPCC assessment report was prepared in 2007, the number of climate
observations had grown substantially resulting in three observation-based chapters, including
one called Observations: Ocean Climate Change and Sea Level (IPCC 2007). The number of
publications and the range of techniques that have been developed to interpret the growing number
of ocean carbon observations over the last few years have greatly improved our understanding of
the ocean uptake and storage of inorganic carbon.

CARBON UPTAKE AND STORAGE OVER THE LAST TWO CENTURIES

The first anthropogenic CO2 estimates calculated from direct observations of total alkalinity
(TA) and dissolved inorganic carbon (DIC) concentrations were presented about 30 years ago by
Brewer (1978) and Chen & Millero (1979). Variations of this approach have been pursued by a
large number of investigators in many regions of the world ocean (Chen 1982, Papaud & Poisson
1986, Poisson & Chen 1987, Goyet & Brewer 1993, Goyet et al. 1998). However, the Brewer and
Chen/Millero approach (hereafter called the Chen technique) did not find general acceptance,
since the uncertainties were generally regarded as too large (e.g., Shiller 1981, Broecker et al.
1985). In 1996, Gruber et al. proposed an approach for estimating anthropogenic CO2 based on
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Biological pump: the
process whereby CO2
is removed from the
surface ocean by
biological production
and added to the ocean
interior when the
organisms die and
decompose while
sinking into the deep
ocean

Solubility pump: the
process whereby CO2
is absorbed into cold,
high latitude waters
that sink into the ocean
interior underneath
warm, lower latitude
waters that cannot
hold as much CO2

many of the principles outlined in the Chen technique, but also addressing several of the criticisms
of the original approach. This approach (hereafter referred to as the �C∗ technique) was applied
to the GEOSECS, TTO, and SAVE data in the Atlantic Ocean (Gruber et al. 1996, Gruber 1998).
The �C∗ technique was later used to estimate Cant in the Indian, Pacific, and Atlantic oceans using
the WOCE/JGOFS data (Sabine et al. 1999, 2002; Lee et al. 2003). Sabine et al. (2004a) combined
these WOCE/JGOFS estimates into a global ocean summary of Cant.

Sabine & Feely (2001) compared the Chen and �C∗ techniques in the Indian Ocean. Applica-
tion of the Chen technique to the WOCE/JGOFS Indian Ocean data set gave a total Cant inventory
that was essentially the same as the �C∗ inventory, but there were substantial differences in the
distributions within the water column depending on the details of how the technique was applied.
In 2005, Lo Monaco et al. (2005a) adapted a version of the Chen approach to examine the Cant

distributions in the Southern Ocean, south of Africa. Lo Monaco et al. (2005b) compared their
results with the �C∗ estimates and found similar results north of 50◦S, but they estimated larger
inventories in the high-latitude Southern Ocean.

Both the �C∗ and Chen techniques are based on the premise that the Cant concentration can be
isolated from measured DIC values (Cm) by subtracting the contribution of the biological pumps
(�Cbio) and the physical processes involving the preindustrial end members and the effects of the
solubility pump (Cphys):

Cant = Cm − �Cbio − Cphys (3)

This general approach is based on the assumption that ocean circulation and the biological pump
have operated in steady state since preindustrial times. Both approaches correct for the biological
term using changes in alkalinity to estimate the calcium carbonate effect and apparent oxygen
utilization (AOU) together with a Redfield ratio to correct for changes due to organic matter
decomposition. The main difference between the Chen and �C∗ techniques is in how the Cphys

term is handled. The first fundamental difference between the two techniques is that in the Chen
approach changes in the properties of the subsurface waters are referenced to the mean deep-water
values, whereas the �C∗ approach divides the water column into isopycnal intervals and references
the changes back to the outcrop region for each interval. The �C∗ technique also takes a different
approach to estimating the effects of the solubility pump. Rather than attempting to determine
a preformed DIC concentration based on an empirical relationship between temperature and
DIC, as does the Chen method, the Cphys term is divided into the DIC the waters would have in
equilibrium with a preindustrial atmosphere (Ceq) and a term that corrects for the fact that, because
CO2 gas exchange is slow relative to the surface water biological and physical processes that can
change CO2, surface waters are rarely in complete equilibrium with the atmosphere (Cdiseq).

Cant = Cm − �Cbio − Ceq − Cdiseq (4)

The equilibrium term is by far the largest fraction of the preformed concentration and can be
calculated using the equilibrium inorganic carbon constants, alkalinity, and the preindustrial at-
mospheric CO2 concentration. The relatively small disequilibrium term can then be estimated on
isopycnal surfaces using a time-dependent tracer such as chlorofluorocarbons (CFCs).

Shortly after the �C∗ approach was published, Goyet et al. (1999) developed a new approach,
MIX, that departs from the traditional family of reconstructions based on preformed DIC. The
MIX approach uses a multiparameter mixing model (Tomczak & Large 1989) to calculate the
relative contributions that a few (basin- or cruise-specific) water mass end members make to
each water sample. In Goyet et al.’s application, temperature (T) and salinity (S) were used as
conservative parameters and alkalinity and dissolved oxygen (O2) were used as nonconservative
parameters. The mixing model uses each sample’s O2 depletion and alkalinity enrichment relative
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GLODAP: Global
Ocean Data Analysis
Project

to its end member composition to quantify the biological (remineralization) contribution to DIC
according to

Cbio = 0.78 ∗ΔO2 + 0.5 ∗ΔTA (5)

Goyet et al. estimate a history of CO2 changes in each end member as a function of depth from
its surface source. The combination of end members’ surface DIC changes and depth-penetration
scales that best reproduces the present-day DIC distribution at depth is determined iteratively.
The MIX approach was first applied to a zonal line in the northern Indian Ocean but was never
implemented on a more extensive data set.

Goyet later developed a different back-calculation method known as the TrOCA method
(Touratier & Goyet 2004, Touratier et al. 2007) that uses a quasi-conservative tracer similar to
those of NO and PO (Broecker 1974), which is based on a Redfield ratio. Cant is estimated from
the difference between the measured TrOCA conservative tracer and a preformed TrOCA tracer.
Touratier & Goyet (2004) estimate the preformed TrOCA by regressing TrOCA against potential
temperature (θ) in deep Atlantic waters with θ < 2.5◦C. These waters are assumed to be free of
Cant and the relationship with θ is assumed to hold for the entire Atlantic. In Touratier et al. (2007)
the implementation was expanded to regress TrOCA against θ and alkalinity using waters from
the Pacific and Indian water where �14C is less than −175 parts per mil (‰). Substantial biases in
the TrOCA method has been found by comparing to observational data and model output (Yool
et al. 2009).

All observationally based anthropogenic CO2 methodologies to date rely on the assumption
that Cant penetrates the ocean as a passive, inert tracer responding to an evolving history in surface
waters. Another approach for estimating Cant is the transit time distribution (TTD) method,
which fully exploits this assumption in order to relax other assumptions. The TTD method does
not use DIC measurements, thus avoiding large uncertainties in back-calculation approaches
related to the biological correction. This approach uses the fact that Cant at any point in the
ocean interior should be related to the concentration history of anthropogenic CO2 at the surface
and the spectrum of times it took the water to reach the interior ocean location. The surface
history is estimated using the equilibrium inorganic carbon chemistry equations, temperature, the
preformed alkalinity (estimated from salinity), and the atmospheric CO2 record. The transit time
distributions are approximated by inverse Gaussian functions based on transient tracers (often
CFCs). The approach then only requires measurements of temperature, salinity, and a transient
tracer if one assumes that biology is not involved, that circulation is in steady state, and that a
single surface source region dominates the interior water so there is no spatial dependency in the
source waters. Hall et al. (2004) used a volume-based version of the TTD method to estimate
Cant in the Indian Ocean, while Waugh et al. (2004) applied a pointwise version to the subpolar
North Atlantic Ocean. Waugh et al. (2006) applied the method to the Global Data Analysis Project
(GLODAP) data set (Key et al. 2004) to generate a global Cant estimate.

An approach to scale observed carbon inventory changes between two cruises separated in time
to the full anthropogenic storage over the last two centuries has been presented by Tanhua et al.
(2007), taking advantage of the exponential nature of the atmospheric Cant increase and exploring
the transient steady state concept (Gammon et al. 1982). An exponentially changing tracer will,
after a certain time, reach transient steady state, meaning that, e.g., a depth profile of Cant will
have constant shape over time, and the concentrations will increase proportionally to the surface
layer increase. This way of calculating the Cant concentration is independent from tracer data and
circumvents many of the assumptions of the back-calculation methods.

A summary of the long-term Cant estimate approaches is given in Table 1. They break down
into three general categories: back-calculation, tracer based, and scaled decadal change. There
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Table 1 Comparison of methods used to determine long-term Cant storage

Method Advantages Disadvantages
Back-calculation Chen Technique (Brewer

1978, Chen & Millero 1979)
Based directly on observed DIC
concentrations in the ocean. Relies
on well-known oceanographic
properties. Can be validated in deep
water where Cant should be zero.

Need to estimate preindustrial
property fields, particularly CO2

air-sea disequilibrium. Assumes
constant stoichiometric ratios. Best
done with large data set. Needs water
mass age estimates.

�C∗ technique (Gruber et al.
1996)

LM05 technique (Lo Monaco
et al. 2005a)

TrOCA (Touratier & Goyet
2004, Touratier et al. 2007)

Based on DIC. Straightforward
calculation. Do not need water mass
age tracer.

Assumes constant stoichiometric
ratios. Preformed values crudely
determined.

MIX (Goyet et al. 1999) Based on DIC. Does not need water
mass age tracer. Can be calculated
using data from a single cruise.

Cumbersome water mass analysis.
Assumes Cant only increases with
depth. Assumes constant
stoichiometric ratios.

Tracer based TTD (Waugh et al. 2004,
Hall et al. 2004)

Less sensitive to near-surface
biological processes. Will not yield
negative Cant values.

This technique cannot detect
biological carbon changes. Sensitive
to assumptions of mixing and
saturation of tracers (e.g., CFCs).

Decadal change Scaled eMLR (Tanhua et al.
2007)

Based on DIC. No assumptions of
preindustrial fields necessary.

Dependent on the assumption of
transient steady state. Still limited
number of decadal repeat data.

are several variations of the back-calculation methods that use modern DIC measurements and
other tracer data to infer the preindustrial carbon distributions and therefore the total inventory
of Cant. The tracer-based TTD method and the scaled decadal change approach do not have as
many variations. All of these methods have their advantages and disadvantages.

Long-Term Cant Storage

After completion of the WOCE/JGOFS global survey in 1998, a five-year effort was begun to
compile and rigorously quality-control the US and international data sets, including a few pre-
WOCE data sets in regions that were data limited. The final data set, GLODAP, with 9618
hydrographic stations collected on 95 cruises, provides the most accurate and comprehensive view
of the global ocean inorganic carbon distribution available (Sabine et al. 2005). By combining these
data with the �C∗ technique, Sabine et al. (2004a) estimated that 118 ± 19 Pg C had accumulated
in the ocean between 1800 and 1994. This inventory accounted for 48% of the fossil fuel and
cement manufacturing CO2 emissions to the atmosphere over that time frame.

A map of the anthropogenic CO2 ocean column inventory (Figure 1) shows that the carbon is
not evenly distributed in space. More than 23% of the inventory can be found in the North Atlantic,
a region covering approximately 15% of the global ocean. By contrast, the region south of 50◦S
represents approximately the same ocean area but only has ∼9% of the global inventory (Sabine
et al. 2004a). Despite the relatively slow equilibration rate for CO2 in seawater (approximately
1 year versus weeks for oxygen), uptake at the surface does not fully explain the spatial differences
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Figure 1
Global map of column Cant (anthropogenic carbon) as given by Sabine et al. (2004a) based on the �C∗
calculation method of Gruber et al. (1996). Adapted from Sabine et al. (2004a).

in storage. The primary reason for these differences is because of the slow mixing time in the
ocean interior and the fact that waters only move into the deep ocean in a few locations. The
highest inventories are found in the locations where mode and intermediate waters are moving
anthropogenic CO2 into the ocean interior (e.g., the northern North Atlantic or in the Southern
Hemisphere associated with the Subtropical Convergence Zone at 40–50◦S; Figure 1).

These estimates of ocean Cant have been used to evaluate models (Orr et al. 2001, Matsumoto
et al. 2004) and to infer air-sea fluxes of CO2 (Gloor et al. 2003, Mikaloff-Fletcher et al. 2006).
However, there are many uncertainties in the �C∗ method. Different implementations of the
method can yield different results (e.g., Wanninkhof et al. 1999, Lo Monaco et al. 2005b) and there
are potential biases due to the assumptions of a single ventilation time, constant disequilibrium,
and constant Redfield ratios (Hall et al. 2004, Matsumoto & Gruber 2005).

Waugh et al. (2006) also used the GLODAP data set to estimate the global Cant inventory
using the TTD method (Figure 2a). The estimated total inventory in 1994 was 134 Pg C. To
evaluate uncertainties in the TTD method, Waugh et al. applied the approach to output from
an ocean general circulation model (OGCM) and compared the results to the directly simulated
Cant. Outside of the Southern Ocean the predicted Cant closely matched the directly simulated
distribution, but in the Southern Ocean the TTD concentrations were biased high. This bias
could be due to the TTD assumption of constant disequilibrium and also possibly due to short
residence times of Southern Ocean waters, which would accentuate the different equilibration
times for CO2 (∼1 year) and the CFCs (∼1 week) used for the TTD estimates. The net result
was a TTD overestimate of the global inventory by about 20%. Accounting for this bias and
other uncertainties, an inventory range of 94–121 Pg C was given by Waugh et al. (2006). This
agrees with the inventory of Sabine et al. (2004a). There were, however, differences in the spatial
distributions (Figure 2b). The TTD estimates generally gave much higher inventories in the
Southern Ocean as previously noted, but there are also differences such as higher inventories in
the North Atlantic Deep Water (Figure 2b). The TTD estimates also generally had smaller Cant
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Figure 2
Global map of (a) Cant column inventories from transit time distribution (TTD) calculations, and (b) difference between TTD and the
�C∗ estimates from Sabine et al. (2004a). Adapted from Waugh et al. (2006).

concentrations than �C∗ in the upper ocean and larger at depth, consistent with biases expected
in �C∗ given its assumption of a single parcel ventilation time.

The global estimate by Sabine et al. (2004a) approximated the Cant inventories in marginal Seas
and the Arctic Ocean due to lack of data, whereas the estimate by Waugh et al. (2006) did not
account for those areas at all. The Cant inventory for the Arctic Ocean has later been estimated
to 2.5–3.3 Pg C (Tanhua et al. 2009) and for the Mediterranean to 1.7 Pg C (surprisingly high
anthropogenic carbon content in the Eastern Mediterranean Sea; A. Schneider, T. Tanhua, A.
Körtzinger, and D.W.R. Wallace, unpublished paper) by the TTD method, showing that both of
these marginal seas have higher than global average Cant concentrations.

Vázquez-Rodŕıguez et al. (2009) compared five different approaches along a meridional line in
the Atlantic. They found that all the observational methods produced reasonable Cant estimates and
inventories for the full length of the Atlantic Ocean. However, south of ∼40◦S there are significant
differences between methods. The uncertainties in Cant estimates due to the method applied are
narrow in the subtropics but larger for polar regions. The impact of these discrepancies is most
important in the Southern Ocean given its large contribution (up to 12%) to the total inventory of
Cant and the larger differences between methods there. A similar result is shown by Álvarez et al.
(2009) for a zonal section in the southern Indian Ocean where five methods to estimate Cant were
compared to each other and particularly large relative differences were found for the deep waters
with a southern origin.

CARBON UPTAKE AND STORAGE OVER THE LAST TWO DECADES

Some of the inherent difficulties in estimating the Cant concentration in the ocean can partly be
overcome by comparing repeat measurements in certain ocean regions or along oceanographic
sections. At least, any systematic biases tend to cancel out when comparing two estimates using the
same assumptions. Typically, comparisons are made on data separated by 10 to 25 years in time,
and are measures of the increase in ocean storage in a particular density range, for a particular
water mass, or over the whole water column. Since the Cant signal is small in comparison to the
background DIC concentration, there are technical difficulties involved in detecting any changes
in DIC concentration on timescales less than about a decade. Further, natural small-scale spatial
and temporal variability tend to obscure the Cant signal. This type of comparison thus requires
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eMLR: extended
Multiple Linear
Regression

precise and accurate data. There have been significant advances in this respect over the last few
decades, for instance by refining analytical methods and compliance to follow recommended best
practices (DOE 1994, Dickson et al. 2007). For carbon measurements, the now common use of
Certified Reference Materials (CRMs) has also had a significant positive impact on the consistency
of the data.

The WOCE/JGOFS global survey in the 1990s offered the first possibility to detect changes
compared to GEOSECS and TTO data. One difficulty in quantifying decadal uptake is that for a
large number of historical data, no CRMs were available for DIC and TA measurement (a problem
that still exists today for some important measurements, e.g., nutrients). This deficiency can be
partly overcome by so-called secondary quality control, i.e., a process where data are objectively
studied in order to quantify systematic biases, for which corrections can be made. This is mostly
done by comparing measurements from different cruises in the deep ocean where steady state
conditions are assumed for the relatively short time interval between cruises (e.g., Gouretski &
Jancke 2001, Johnson et al. 2001, Sabine et al. 2005).

Since the time of GEOSECS it has, in principle, been possible to detect changes in ocean carbon
content through direct comparisons of measured carbon concentrations in the water column in
certain regions. Since several national and international projects are resampling WOCE/JGOFS
oceanographic lines with high-quality carbon measurements, more decadal uptake estimates will
likely be made in the future. In particular, it opens the possibility of comparing inventory changes
with decadal scale changes in the uptake rate, e.g., to distinguish between pre-1990s and post-1990s
storage rates.

Just as with estimates of the centennial scale Cant concentrations, there are several methods
to calculate decadal scale changes in DIC. One common approach is to compare measured DIC
concentrations on surfaces of equal density, and to adjust for changes in dissolution of organic
matter and (sometimes) calcium carbonate using oxygen, alkalinity, and/or nutrient data. Another
similar method is to calculate the Cant concentrations for two cruises using a back-calculating
method, and then consider only the difference between the two estimates. This has the advantage
that assumptions such as the preindustrial air-sea disequilibrium become irrelevant, since the
two terms will cancel out in the comparison. A multiple linear regression approach (MLR) was
introduced by Wallace (1995) where DIC concentration is predicted by several other parameters.
This approach compensates for variability in water mass distribution and temporal variability
within a water mass. The MLR method was later refined by (Friis et al. 2005) to a method known
as extended MLR (eMLR).

As seen above, transient tracers can be used to determine the long term Cant inventory, but they
can also be used to evaluate the decadal intentory changes. Once the tracer field is established, the
uptake rate can be determined for any time period with the assumption of constant circulation, i.e.,
that the age field remains constant (e.g., Watanabe et al. 2000). Repeat measurements of transient
tracers can account for changes in circulation and specifically address the role of circulation for the
storage of Cant (e.g., Steinfeldt et al. 2009). However, the different input histories of Cant and CFCs
influence the relationship between the storage rate of the two components, so a rapid increase in
CFC concentration is not necessarily associated with a rapid increase in Cant (e.g., Tanhua et al.
2006), if mixing is not explicitly addressed.

Decadal Change in Cant Storage

In the following we will compare some data-based estimates of decadal scale changes in concen-
tration of dissolved inorganic carbon integrated over the whole water column and report this as
annual storage change, i.e., in units of mol m−2 year−1, a measure that includes direct uptake
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Figure 3
A section of anthropogenic carbon storage rate in the mid-latitude North Atlantic calculated as yearly means
of the measured change between 1981 and 2004 with the extended Multiple Linear Regression (eMLR)
method (see cruise j in Figure 4; see also Tanhua et al. 2007). Storage changes <0.1 μmol kg−1 year−1 are
left blank.

through the air-sea interface and carbon advected or mixed into the water column from surround-
ing waters. We will refer to this quantity as storage rate. As an example of the vertical structure of
the storage rate, we present a quasi-zonal section of the mid-latitude North Atlantic in Figure 3.
There are high storage rates for the upper waters, particularly associated with the warm and salty
waters of the southwestern part of the section where the buffer capacity is large, and a core of
positive storage rates associated with the deep western boundary current in the deep western part
of that section. Note that the penetration of Cant is particularly deep in the North Atlantic. If the
global oceanic uptake of Cant (∼2.2 Pg C year−1) was evenly distributed over the world ocean, the
average storage rate would be ∼0.55 mol m−2 year−1 (Sabine et al. 2008).

Figure 4, indices a–k, provides an overview of some published data based estimates of storage
rates. (a) An early work on decadal uptake is provided by Peng et al. (1998) who calculate the Cant

storage rates of up to 0.65 mol m−2 year−1 in the Indian Ocean by comparison of GEOSECS
data with data from WOCE (1978–1995). (b) Data from GEOSECS were also used by Tsunogai
et al. (1993) to calculate storage rates in the Northwest Pacific Ocean between 1974–1991; (c) and
by Peng et al. (2003) to calculate the storage rate in the Pacific Ocean between 1973–1991 with
the MLR approach. The contemporary storage rate studies for the North Pacific are provided
by (d ) Sabine et al. (2008) and (e) Murata et al. (2009) that compared cruises from 1991–1993
with cruises in 2005/2006. The highest storage rates found by these two studies in the Northwest
Pacific is 0.9 mol m−2 year−1, which is lower than both the estimates of Tsunogai et al. (1993)
and Peng et al. (2003). The observed differences between early and contemporary storage rates
in the North Pacific could be due to technical problems associated with systematic biases in the
GEOSECS DIC data. However, it is also possible that there are real trends in storage rate, which
would imply a reduction in the Cant storage rate since the mid-1990s while CO2 has continued to
increase faster in the atmosphere.

( f ) For the South Pacific, a study by Matear & McNeil (2003) used a MLR-based method
to compare data from 1968 with data from 1991–1996 along three lines south of Australia and
New Zealand. They find high storage rates in the Subantarctic Mode Water and for the Antarctic
Intermediate Water (up to ∼0.8 mol m−2 year−1), and a large storage rate in the Antarctic Bottom
Water for the westernmost section. Despite the different time interval, the storage rates found by
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Figure 4
A world map with published data-based estimates of column inventories of anthropogenic carbon storage rates (mol m−2 year−1).

Index Data source Time period Method
a (Peng et al. 1998) 1978–1995 Isopycnal, O2 adjusted
b (Tsunogai et al. 1993) 1974–1991 Column-integrated change in

preformed carbonate
c (Peng et al. 2003) 1973–1991 MLR
d (Sabine et al. 2008) 1991/1992–2005/2006;

1994–2004
eMLR

e (Murata et al. 2009) 1993–2005 Isopycnal, O2 adjusted
f (Matear & McNeil 2003) 1968–1991/1996 MLR
g (Murata et al. 2007) 1992–2003 Isopycnal, O2 adjusted
h (Friis et al. 2005) 1981–1997/1999 eMLR
i (Olsen et al. 2006) 1981–2002/2003 eMLR
j (Tanhua et al. 2007) 1981–2004 eMLR
k (Murata et al. 2008) 1992/1993–2003 Isopycnal, O2 adjusted

Sabine et al. (2008) are similar to the easternmost values by Matear & McNeil. (g) A zonal section
along 32◦S by Murata et al. (2007), however, found slightly higher storage rates than Matear &
McNeil using data from 2003 and 1992. Murata et al.’s high storage rates north of New Zealand
were attributed to deep-water carbon storage. Even though the methods used by Sabine et al.
(2008) and Murata et al. (2007) are different, the storage rates at the crossover point between the
two data sets are almost identical.

It seems that only moderate adjustments need to be applied to the 1981 TTO-NAS data
(Tanhua & Wallace 2005), and a number of studies have compared the TTO data with modern
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data, together covering large parts of the North Atlantic and the Nordic Seas. (h) Friis et al. (2005)
use data from 1997 and 1999 to calculate the storage rate in the subpolar North Atlantic and to
introduce the extended Multiple Linear Regression (eMLR). The eMLR method is later used by
(i) Olsen et al. (2006) and (j) Tanhua et al. (2007) to calculate the storage rate in the Nordic Seas
(modern data from 2002/2003) and the mid-latitude North Atlantic (modern data from 2004),
respectively. The North Atlantic clearly has the highest storage rate of the world ocean, which is
to be expected since this region has the highest inventory of Cant (Figure 1).

Figure 4 suggests that the storage rate is highest in the subpolar North Atlantic, slightly lower
at lower latitudes and north of the Greenland-Scotland ridge. However, the column inventory
is obviously dependent on water depth, and the Nordic Seas tends to be somewhat shallower
than the North Atlantic, but the uptake rate might well be variable with time. This is shown by
Perez et al. (2008) who reported on Cant changes in the southern part of the Irminger Sea and
found significant temporal variability in the storage rates: 0.55 mol m−2 year−1 between 1981–
1991; 2.3 mol m−2 year−1 between 1991–1997; and 0.75 mol m−2 year−1 between 1997–2006.
Similarly, a study comparing the CFC distributions between 1997–2003 (Steinfeldt et al. 2009)
found a dramatic reduction of Cant column inventories in the central Labrador Sea, i.e., storage
rates smaller than −2 mol m−2 year−1. The reason for this is related to weak formation of Labrador
Sea Water (LSW) since 1997. The Cant -rich LSW is advected out of the region and replaced with
upper LSW and relatively Cant-poor North Atlantic Deep Water. It is unclear if the decrease of
Labrador Sea Cant column inventory is part of a long-term trend or part of decadal variability.

(k) For the South Atlantic, Murata et al. (2008) finds average storage rates close to the global
mean value of 0.55 mol m−2 year−1, but with significantly higher rates in the western basin. Murata
et al. (2008) further found significant storage rates in the Antarctic Bottom Water (AABW) in
the eastern part of the section (not visualized in Figure 4k). If the AABW is accounted for, the
storage rates would increase to about 1 mol m−2 year−1 in the eastern basin. As seen before, the
concentration of Cant in the AABW continues to be difficult to quantify.

The results presented here clearly demonstrate that detecting decadal changes in carbon in-
ventory is a feasible undertaking, and that these data are good indicators of integrated changes
in Cant storage. It is also clear that there are large spatial differences in the storage rates. There
are several indications that, in some parts of the ocean, the storage rate is changing on decadal
timescales, although it is unclear if this is a trend or variability. There are more cruises planned to
complete the current global resurvey of the WOCE/JGOFS lines. Once these cruises are analyzed,
a more comprehensive global picture of storage rates will be developed that can be used to evaluate
the consistency with the independently derived ocean uptake estimates. Continued monitoring of
the changing carbon inventory through repeat hydrography is important for detecting changes
in the ocean carbon cycle and developing correct assessments of the anthropogenic carbon stock
changes.

CARBON AND CLIMATE FEEDBACKS

We still do not fully understand the global carbon cycle or how the ocean uptake and storage of
CO2 are changing because of the strong interactions between the different parts of the system.
Up to this point, the assumption has been that ocean storage of Cant has been controlled by
purely physical and chemical processes directly responding to rising CO2 concentrations in the
atmosphere. The average anthropogenic CO2 fluxes for the period 2000–2005 are indicated by
the red arrows in Figure 5. The bracketed numbers give natural (black) and anthropogenic (red)
inventories. We are just now starting to appreciate that by adding approximately 135 Pg C to the
ocean between 1800 and the early 2000s, the resulting changes in seawater chemistry may have
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Figure 5
The Global Ocean Carbon Cycle in the early 2000s and feedback mechanisms. Bracketed values denote reservoir size (Pg C), with
values in red denoting anthropogenic change. Bracketless values are fluxes (Pg C year−1), with values in red denoting anthropogenic
fluxes. Letters in purple denote feedback mechanisms discussed in the text, with plus and minus signs indicating positive and negative
feedback loops in terms of atmospheric CO2 concentration. Abbreviations: a+, decreased buffer capacity; b+, decreased solubility in
warmer ocean; c+, enhanced recycling due to warmer ocean; d–, carbon overconsumption; e?, DOM recycling/export; f+, increased
denitrification; g–, increased nitrogen fixation; h–, reduced calcification; i+, reduced particle ballast; j+, increased stratification; k?,
increased Southern Ocean winds; l+, reduced deep-water formation; m–, reduced upwelling; n–, increased carbonate dissolution; PIC,
particulate inorganic carbon; POC, particulate organic carbon; DOC, dissolved organic carbon; NPP, net primary production. Adapted
from Sabine et al. (2004b).

Feedback: the
process by which a
system is modulated,
controlled, or changed
by the product, output,
or response it produces

a profound impact on the ocean biological and calcium carbonate cycles. A basic schematic of
these cycles is shown in Figure 5. Changes in one part of the carbon cycle can feed back to affect
another part of the carbon cycle (i.e., create a feedback loop) and it is not always clear what the
net balance will be. This makes changes in the future role of the ocean in the global carbon cycle
very difficult to predict.

Part of the problem is that today’s global carbon cycle is intimately linked with the structure
of the global ecosystems. Carbon is one of the primary currencies exchanged between organisms.
As we change the balance of the carbon cycle, it is not clear how these ecosystems might respond.
These changes could select against or for particular classes of organisms, causing massive extinc-
tions or population booms. As organisms (including humans) attempt to adapt to these changing
conditions, the flows of carbon in and out of the primary reservoirs can be significantly altered,
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pCO2: the partial
pressure of carbon
dioxide, which
controls the
thermodynamic drive
for the ocean to
exchange carbon with
the atmosphere

Denitrification: a
process through which
nitrate (NO3

−) is
reduced to molecular
nitrogen

Nitrogen fixation: a
process through which
molecular nitrogen is
converted to
bioavailable nitrate by
organisms

throwing off the delicate balance observed over the last millennium. Here we present some ev-
idence of feedbacks that are active in the marine carbon system, although we do not pretend to
be comprehensive; we will show some of the intriguing and complex feedback systems at work.
We refer to mechanisms that enhance the atmospheric CO2 perturbation as a positive feedback
mechanism (shown as plus signs in Figure 5), whereas mechanisms that tend to dampen the atmo-
spheric CO2 perturbation are referred to as negative feedbacks (shown as minus signs in Figure 5).
The feedback loops discussed below are depicted in purple as a–n in Figure 5.

(a) There are relatively straightforward and well-understood feedbacks related to the chemistry
of the carbonate system. Increased concentration of DIC in seawater and other factors, such as
temperature, alkalinity, etc., influence the capacity of the ocean to respond to CO2 perturbations.
One way to consider this is with the Revelle factor:

⎛
⎝

δpCO2
/

δDIC
pCO2

/
DIC

⎞
⎠ (6)

Increasing pCO2 increases the Revelle factor, making the ocean less efficient at absorbing more
CO2, i.e., a positive feedback. The Revelle factor for surface waters has already increased by about
one unit over the last 250 years (Sabine et al. 2004a).

(b) Similarly well understood is the response to increased temperatures; even though the Revelle
factor decreases with increasing temperature (everything else constant), the solubility of CO2 in
seawater also decreases with increasing temperature. The latter effect is dominating so that a
warmer ocean will lead to reduced CO2 uptake, i.e., a positive feedback (Goodwin & Lenton 2009).

(c) The increased carbon concentration in the photic zone of the ocean has direct effects on
biology, with more difficult to quantify feedbacks for the carbon cycle. For instance, experimental
evidence indicates a shift in the balance between primary production and heterotrophic con-
sumption of organic matter in warmer water. Enhanced recycling and respiration cause a faster
replenishing of the DIC pool in the surface layers and leave less organic carbon for export, thereby
potentially weakening the biological pump, i.e., a positive feedback loop induced by warmer surface
waters (Wohlers et al. 2009).

(d ) Similarly, experimental evidence suggests an increased carbon to nitrogen ratio in phy-
toplankton grown under elevated carbon concentrations (i.e., carbon overconsumption), which
would lead to increased export of organic carbon from the mixed surface layer to the deeper part
of the ocean (Riebesell et al. 2007), i.e., a negative feedback.

(e) Dissolved organic matter (DOM) tends to have very high carbon to nutrient ratios, particu-
larly for the refractory fraction, and downward transport of DOM is an efficient export mechanism
of carbon to the deep ocean (Hopkinson & Vallino 2005). Changes in the DOM cycle or compo-
sition can induce potentially significant feedback loops. For instance, increased remineralization
depth of labile DOM will provide a negative feedback, whereas decreased near-surface stability of
refractory DOM is a positive feedback.

( f ) A further feedback loop on the carbon cycle is provided by increased particulate organic
carbon (POC) flux to the upper water column associated with carbon overconsumption and lower
sinking rates due to reduced calcium carbonate ballast (see below). Taken together, this will likely
increase the extent of oceanic oxygen minimum zones (OMZ) (e.g., Hofmann & Schellnhuber
2009, Oeschlies et al. 2008), which implies increased denitrification and hence possible reduced
production when this water reaches the surface ocean, creating a positive feedback.

( g) However, it is possible that the nitrate-poor water (relative to phosphate) resulting from
the denitrification will stimulate nitrogen fixation in the euphotic zone (Deutsch et al. 2007), i.e.,
a dampening effect on the positive feedback due to increased OMZs.
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Aragonite and
calcite: two different
forms of calcium
carbonate used by
marine organisms for
shells or skeletal
structures

The invasion of anthropogenic CO2 in the oceans inevitably leads to decreasing pH, lower
concentration of carbonate ion, and lowered saturation state for aragonite and calcite, i.e., ocean
acidification (e.g., Doney et al. 2008). The largest effects are seen in the upper ocean where most
of the anthropogenic CO2 is stored. High-latitude cold waters are particularly sensitive to de-
creasing pH since the saturation state of calcite and aragonite tends to be lower than in temperate
and tropical waters; i.e., a modest change in the pH might lead to calcite and/or aragonite under-
saturation near poles (e.g., Orr et al. 2005). Ocean acidification will likely affect the calcification
rate of some organisms. There is experimental evidence that reduced pH leads to decreasing
calcification by several, but not all, marine organisms, including cocolitophorides, foraminifers,
corals, and pteropods (e.g., Doney et al. 2008, Riebesell et al. 2000). However, it is not clear to
what extent calcifying organisms are able to adapt to different carbonate chemistry over many
generations (e.g., Langer et al. 2006) or that all calcifying organisms will respond the same way
(Iglesias-Rodriguez et al. 2008, Riebesell et al. 2008). Reduced calcification will act on at least two
opposing feedback systems for the carbon cycle, (h) and (i ).

(h) First, the chemistry of the carbonate system prescribes release of CO2 during calcification;
i.e., less CO2 will be released under a reduced calcification scenario and act as a negative feedback.

(i ) Second, calcium carbonate particles act as ballast for POC sinking from the upper ocean,
allowing organic particles to be transported to greater depths before they decompose than they
would have without the extra ballast (e.g., Armstrong et al. 2002). It is possible that the particle
flux of organic carbon to the deep ocean will be reduced if the calcification rate decreases, creating
a positive feedback. It has been shown that even a modest increase in the remineralization depth
will reduce atmospheric CO2 substantially (Kwon et al. 2009).

( j ) Changes in climate may act indirectly to affect the uptake of anthropogenic CO2 via changes
in phytoplankton community. For instance, coccolitophores, favored in oligothrophic nutrient-
limiting conditions, have a positive feedback effect due to the formation of calcite shells, whereas
diatoms that prefer weakly stratified, nutrient-rich environments have a negative feedback since
they are responsible for large parts of the biological carbon export. A more stratified ocean in a
global warming scenario would tend to reduce the nutrient supply to the photic zone, which in turn
would favor the growth of coccolitophores over diatoms, a positive feedback (Cermeno et al. 2008).

(k) Changing climate, with inevitable changes in physical forcing, leads to changes in ocean
circulation and properties (salinity and temperature), which will have direct or indirect implications
for the carbon cycle. For instance, observations show intensification of Southern Ocean winds
during the past decades, and most climate models predict this trend will continue as a response
to a warmer world. Further, the Southern Ocean is an important sink for anthropogenic carbon,
possibly responsible for ∼40% of the total ocean Cant uptake (Sabine et al. 2004a). Le Quere et al.
(2007) found, based on atmospheric CO2 concentrations and an inverse method, that the Southern
Ocean sink of Cant has weakened in the last decades compared to expectations from the atmospheric
increase of CO2. However, the study was criticized for the choice of atmospheric CO2 data and
for neglecting important processes regulating the CO2 air-sea exchange (Law et al. 2008, Zickfeld
et al. 2008b). Observational records further indicate that increased wind stress in the Southern
Ocean has little effect on the transport in the Antarctic Circumpolar Current and on the meridional
overturning circulation since the increased Ekman transport is compensated by an increased eddy
flux. Thus, the net effect of increased wind stress on the carbon flux should be quite small (Böning
et al. 2008). Non-eddy-resolving ocean models are apparently not able to correctly predict the
Southern Ocean response to increased wind forcing and the feedback on the carbon cycle.

(l ) Similarly, most climate models predict reduced Meridional Overturning Circulation (MOC)
in a future, warmer world. This will choke the transport of surface waters, laden with anthropogenic
CO2, into the deep ocean, a positive feedback.
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(m) At the same time, decreased MOC will also reduce upwelling of deep water with high
DIC concentration, a negative feedback. The net balance between feedbacks (l ) and (m) is still
a matter of scientific debate (e.g., Sarmiento & Le Quere 1996, Zickfeld et al. 2008a). Since the
MOC also controls the large-scale supply of nutrients to the surface layer, there are biological
ramifications for the carbon cycle in addition to the direct physical transport impacts. Reduced
biological export of carbon due to changes in nutrient supplies related to reduced MOC seems to
be the dominant impact over circulation changes that leads to a net positive feedback, but with
large regional differences (Zickfeld et al. 2008a).

Most of the processes involved in the feedbacks described here are not understood or monitored
well enough to determine whether these feedbacks are changing today as a result of climate
change and increasing Cant in the ocean. As stated previously, the current scientific paradigm is
that anthropogenic CO2 is entering the ocean as a passive thermodynamic response to rising
atmospheric CO2. The current challenge for the scientific community is to determine whether
these feedbacks are occurring and how they will modify the ability of the ocean to store Cant over
the next few decades.

LONG-TERM ACCUMULATION OF ANTHROPOGENIC CO2

By the early 2000s, approximately 330 Pg C had been released to the environment from the
burning of fossil fuels (Figure 5). There are vast amounts of fossil fuel (>5000 Pg C) remain-
ing in geological formations that can potentially be oxidized to CO2 by human activities, most
of that in the form of coal. In addition to this, there are large deposits (5000–10,000 Pg C) of
methane hydrate in permafrost and in deep-sea sediments, the latter location being the dom-
inating source. Although it remains highly uncertain how much of these stores will end up as
CO2 in the atmosphere, we will briefly consider the ocean response to the carbon perturba-
tion on millennial timescales. As seen above, atmospheric CO2 will equilibrate with the global
ocean on centennial timescales and a large fraction of the anthropogenic CO2 will be stored
in the ocean, independently of whether the CO2 is released to the atmosphere or purpose-
fully placed in the ocean (i.e., ocean sequestration). The ocean has a vast capacity to store CO2

so it will continue to take up CO2 as long as it is increasing in the atmosphere. The rate at
which this process takes place, and the magnitude of the fraction that dissolves in the ocean,
are dependent on the biogeochemical feedback loops and processes discussed in the previous
section.

On millennial timescales accumulation of atmospheric CO2 in the ocean tends to be increased
by two additional feedback processes: calcium carbonate (CaCO3) dissolution and silicate (CaSiO3)
weathering (e.g., Archer 2005, Archer et al. 1997, Montenegro et al. 2007). As discussed in
the previous section, accumulation of CO2 in the ocean lowers the pH of the ocean and makes
the waters more corrosive towards CaCO3 minerals (Figure 5n). Dissolution occurs both in the
water column and from sediments, creating a negative feedback to the atmosphere often referred
to as CaCO3 compensation (Broecker & Peng 1987). The net effect of CaCO3 dissolution is the
restoring of oceanic pH and the increase in the fraction of Cant that can be dissolved in the ocean
according to the following equation:

H2O + CO2 + CaCO3 ↔ 2HCO−
3 + Ca2+ (7)

Further, weathering of silicate-containing igneous rock restores the carbonate system on geological
timescales according to the following equation:

3H2O + 2CO2 + CaSiO3 ↔ Ca2+ + 2HCO−
3 + Si(OH )4 (8)
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This is a slow process; the e-folding timescale for CO2 relaxation of silicate weathering is on
the order 200 thousand to 400 thousand years (e.g., Archer et al. 1997, Sundquist 1991). This
process might be more efficient if the hydrological cycle accelerates in a warmer world, but the
dynamics of this process is complicated by long timescales invoking glacial/interglacial processes
and weathering changes as well as tectonic processes (Archer 2005).

The time until the atmospheric anthropogenic CO2 burden is reduced to 25% of the total
emission is calculated to be 1800 years by Montenegro et al. (2007), but only 300–450 years
by Archer (2005) in a different model set-up and experiment type. However, both approaches
suggest a long tail in the perturbation, with a mean lifetime of atmospheric anthropogenic CO2 of
30 thousand to 35 thousand years found by Archer (2005). Taken together, these two feedback loops
tend to restore atmospheric CO2 levels towards preindustrial levels by increasing the alkalinity
and restoring the oceanic buffer capacity. However, on timescales of up to a few millennia, it can be
expected that the partitioning between the ocean and atmosphere CO2 reservoirs will be roughly
maintained through restoring of the ocean buffer capacity by CaCO3 dissolution. This leaves a
fraction of ∼7% of the CO2 perturbation in the atmosphere for several hundred thousand years for
silicate weathering to handle (Archer 2005). However, the magnitude of the ocean Cant fraction is
dependent on climate feedbacks such as the amount of ocean heating; warmer water holds less CO2

than cold water, potentially increasing the airborne fraction up to 15% (Archer 2005). Depending
on the future magnitude of the anthropogenic CO2 emissions, release of anthropogenic CO2 will
result in higher oceanic alkalinity and DIC concentrations, up to roughly 8% increase in oceanic
DIC if the majority of available fossil fuel is used.

CONCLUSIONS

The ocean’s role as a sink for anthropogenic CO2 appears to be changing over time and will likely
change even more dramatically into the future. Although the uncertainties are fairly large due to
necessary assumptions, most approaches agree that the global ocean inventory of Cant was around
120 Pg C in the mid-1990s. This means that nearly half of the CO2 released into the atmosphere
from burning fossil fuels between 1800–1994 ended up in the ocean (Sabine et al. 2004a).

Based on ocean uptake estimates, the global ocean inventory should be increasing by about
2.2 Pg C per year, giving a total inventory of about 135 Pg C in the early 2000s (Gruber et al.
2009). Since 2000, global fossil fuel CO2 emission has increased at an annual rate of 3.3%, giving
a total cumulative emission of approximately 330 PgC by 2006 (Canadell et al. 2007). Thus,
the ocean storage of carbon only accounts for ∼41% of the total fossil fuel emissisons since the
preindustrial era. This percentage has droped since the mid 1990s because the rate of ocean carbon
uptake does not seem to be keeping pace with the rate of growth in CO2 emissions (Bindoff et al.
2007). The land use change emissions are highly uncertain, but if they are included as part of
the calculation, then the oceans are only absorbing about 25% of the current total anthropogenic
emissions (Canadell et al. 2007).

These estimates, however, are strongly dependent on the ocean uptake calculations. Estimates
of decadal scale ocean inventory changes consistently show increases in Cant in the water column,
but have not been synthesized in a coordinated way to be able to confirm or deny a slowdown in
the rate of carbon storage. Unfortunately, the first global estimate of decadal carbon inventory
changes will not be available for a few more years, and it will be more than a decade before another
survey will be able to make a global evaluation of how the rates of storage are changing based just
on ocean interior observations.

Ocean interior observations, however, remain the best mechanism for verifying the changes
in ocean Cant inventory. It is extremely difficult to predict how the many possible carbon cycle
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feedbacks will affect ocean carbon storage; modeling and proxy techniques are limited by our
current understanding of the ocean carbon cycle. It is critically important that we understand how
Cant is accumulating in the ocean on timescales relevant to human civilization (years to decades).
CO2 emissions are growing at an ever increasing rate and the momentum of the carbon and climate
system is such that decisions made today will still impact the climate for hundreds to thousands of
years to come. The best way to improve our understanding is to continue using a broad suite of
approaches, with both observations and models, to examine both ocean carbon uptake and ocean
carbon storage over a range of timescales.

SUMMARY POINTS

1. With the synthesis of the WOCE/JGOFS data, the first robust global estimates of the
total accumulation of Cant were produced. Although the uncertainties are fairly large due
to necessary assumptions, most approaches agree that the global ocean inventory of Cant

was around 120 Pg C in the mid-1990s.

2. Based on ocean uptake estimates, the global ocean inventory should be increasing by
about 2.2 Pg C per year, giving a total inventory of about 135 Pg C in the early 2000s
(Gruber et al. 2009). Repeat hydrographic sections are currently being run that will allow
an assessment of decadal inventory changes that can be compared to these ocean uptake
estimates.

3. Estimates of decadal scale ocean inventory changes consistently show increases in Cant

in the water column, but have not been synthesized in a coordinated way to be able to
confirm or deny a slowdown in the rate of carbon storage. Ocean interior observations,
however, remain the best mechanism for verifying the changes in ocean Cant inventory.

4. It is extremely difficult to predict how the many possible carbon cycle feedbacks will
affect ocean carbon storage; modeling and proxy techniques are limited by our current
understanding of the ocean carbon cycle.

5. It is critically important that we understand how Cant is accumulating in the ocean on
timescales relevant to human civilization (years to decades). CO2 emissions are growing
at an ever increasing rate, and the momentum of the carbon and climate system is such
that decisions made today will still impact the climate for hundreds to thousands of years
to come.

6. The best way to improve our understanding is to continue using a broad suite of ap-
proaches, with both observations and models, to examine both ocean carbon uptake and
ocean carbon storage over a range of timescales.
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Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, et al. 2009. Changes in biogenic carbon flow in
response to sea surface warming. Proc. Natl. Acad. Sci. 106:7067–72

Yool A, Oschlies A, Nurser AJG. 2009. A model-based assessment of the TrOCA approach for estimating
oceanic anthropogenic carbon. Biogeosci. Discuss. 6:7231–93

Zickfeld K, Eby M, Weaver AJ. 2008a. Carbon-cycle feedbacks of changes in the Atlantic meridional over-
turning circulation under future atmospheric CO2. Glob. Biogeochem. Cycles 22:GB3024

Zickfeld K, Fyfe JC, Eby M, Weaver AJ. 2008b. Saturation of the southern ocean CO2 sink due to recent
climate change. Science 319:570

198 Sabine · Tanhua

A
nn

u.
 R

ev
. M

ar
in

e.
 S

ci
. 2

01
0.

2:
17

5-
19

8.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 D

av
id

 A
. S

ie
ge

l o
n 

03
/2

9/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



AR399-FM ARI 9 November 2009 17:13

Annual Review of
Marine Science

Volume 2, 2010

Contents

Paleophysical Oceanography with an Emphasis on Transport Rates
Peter Huybers and Carl Wunsch � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

Advances in Estuarine Physics
Parker MacCready and W. Rockwell Geyer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �35

The Effect of Submarine Groundwater Discharge on the Ocean
Willard S. Moore � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �59

Marine Ecomechanics
Mark W. Denny and Brian Gaylord � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �89

Sea Surface Temperature Variability: Patterns and Mechanisms
Clara Deser, Michael A. Alexander, Shang-Ping Xie, and Adam S. Phillips � � � � � � � � � � � � 115

Contemporary Sea Level Rise
Anny Cazenave and William Llovel � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 145

Estimation of Anthropogenic CO2 Inventories in the Ocean
Christopher L. Sabine and Toste Tanhua � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 175

Ocean Deoxygenation in a Warming World
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